PUAS31
Selasa, 25 November 2008
rasio zoom
esolusi gambar : Resolusi gambar secara umum dinyatakan dalam satuan Mega Pixel, yang menyatakan kuantitas maksimum pixel untuk setiap image yang dihasilkan dari kamera. Penerapannya adalah semakin besar pixel semakin besar ukuran gambar yang mampu dicetak pada kualitas optimal.Jadi belum tentu kita membutuhkan kamera dengan mega pixel yang besar. Sebagai contoh, hubungan antara mega pixel dan ukuran gambar guideline :Image dengan ukuran 3888 x 2592 pixel = 10Mpixels mampu dicetak maksimal dengan resolusi optimum pada ukuran 54 inch x 36 inch (137cm x 92 cm) dengan resolusi 72 pixel/inch.
Zoom : Seperti yang sudah disinggung tadi ada dua jenis zoom dalam kamera digital pocket (tidak berlaku untuk kamera DSLR). Produsen biasanya mengiklankan kameranya dalam bentuk zoom total, jadi hati-hati. Zoom Optical adalah tipe zoom yang murni oleh lensa kamera, sedangkan zoom digital adalah tipe zoom yang dilakukan dengan memanipulasi gambar dengan software di dalam kamera dan zoom digital akan mengorbankan resolusi dari gambar (menurunkan resolusi). Sebisa mungkin hindari penggunaan zoom digital. Jadi pilih kamera yang memberikan optical zoom yang sebesar mungkin.
ISO : ISO adalah satuan kesensitivan sensor (film) kamera terhadap intensitas foton/cahaya. Pengaturan ISO seringkali diperlukan sesuai kondisi cahaya yang tersedia. Oleh karena itu kamera dengan opsi pengaturan berbagai harga ISO diutamakan dalam memilih kamera. Besar pilihan ISO yang umum dalam kamera digital saat ini dari 100 hingga 1600.
Lensa : Lensa berfungsi bagaikan kornea dari mata kita. Oleh karena itu memilih kamera dengan lensa yang baik tentu saja menjadi pertimbangan yang baik pula. Leica dan Carl Zeiss adalah dua merk terkenal dalam dunia optik kamera yang layak dipertimbangkan.
Baterai : Pilih kamera dengan baterai Li-on (lithium ion) yang sangat praktis dan tahan lama (baik waktu operasional maupun umur pakai) dibanding jenis baterai lainnya pada saat ini. Baterai jenis ini juga biasanya disertai charger yang memudahkan pengisian kembali arus listrik ke dalam baterai.
Media penyimpan file : Pertimbangkan jumlah gambar yang ingin lu ambil dalam satu kali penyimpanan. Media penyimpan 2GB mampu menyimpan file gambar hingga sekitar 500 untuk kamera 10 Mega pixels.
Fitur dan Kemudahan operasi : Pertimbangkan fitur-fitur lain yang menarik, seperti jenis-jenis program pengambilan foto, pengaturan saturasi/white balance/dll, support software. Pertimbangkan kemudahan pengoperasiannya.
Zoom : Seperti yang sudah disinggung tadi ada dua jenis zoom dalam kamera digital pocket (tidak berlaku untuk kamera DSLR). Produsen biasanya mengiklankan kameranya dalam bentuk zoom total, jadi hati-hati. Zoom Optical adalah tipe zoom yang murni oleh lensa kamera, sedangkan zoom digital adalah tipe zoom yang dilakukan dengan memanipulasi gambar dengan software di dalam kamera dan zoom digital akan mengorbankan resolusi dari gambar (menurunkan resolusi). Sebisa mungkin hindari penggunaan zoom digital. Jadi pilih kamera yang memberikan optical zoom yang sebesar mungkin.
ISO : ISO adalah satuan kesensitivan sensor (film) kamera terhadap intensitas foton/cahaya. Pengaturan ISO seringkali diperlukan sesuai kondisi cahaya yang tersedia. Oleh karena itu kamera dengan opsi pengaturan berbagai harga ISO diutamakan dalam memilih kamera. Besar pilihan ISO yang umum dalam kamera digital saat ini dari 100 hingga 1600.
Lensa : Lensa berfungsi bagaikan kornea dari mata kita. Oleh karena itu memilih kamera dengan lensa yang baik tentu saja menjadi pertimbangan yang baik pula. Leica dan Carl Zeiss adalah dua merk terkenal dalam dunia optik kamera yang layak dipertimbangkan.
Baterai : Pilih kamera dengan baterai Li-on (lithium ion) yang sangat praktis dan tahan lama (baik waktu operasional maupun umur pakai) dibanding jenis baterai lainnya pada saat ini. Baterai jenis ini juga biasanya disertai charger yang memudahkan pengisian kembali arus listrik ke dalam baterai.
Media penyimpan file : Pertimbangkan jumlah gambar yang ingin lu ambil dalam satu kali penyimpanan. Media penyimpan 2GB mampu menyimpan file gambar hingga sekitar 500 untuk kamera 10 Mega pixels.
Fitur dan Kemudahan operasi : Pertimbangkan fitur-fitur lain yang menarik, seperti jenis-jenis program pengambilan foto, pengaturan saturasi/white balance/dll, support software. Pertimbangkan kemudahan pengoperasiannya.
jarak fokus lensa kamera
amera SLR (single-lens reflex) atau Kamera refleks lensa-tunggal adalah kamera yang memungkinkan fotografer untuk dapat melihat objek melalui kamera dengan sama persis seperti apa yang ia lihat. Hal ini berbeda dengan kamera non-SLR, dimana pandangan yang terlihat di viewfinder bisa jadi berbeda dengan apa yang ditangkap di film.
Kamera SLR menggunakan pentaprisma yang ditempatkan di atas jalur optikal melalui lensa ke lempengan film. Cahaya yang masuk kemudian dipantulkan ke atas oleh kaca cermin pantul dan mengenai pentaprisma. Pentaprisma kemudian memantulkan cahaya beberapa kali hingga mengenai jendela bidik. Saat tombol dilepaskan, kaca membuka jalan bagi cahaya sehingga cahaya dapat langsung mengenai film. (NESW4586)Daftar isi [sembunyikan]
1 Komponen Kamera SLR
1.1 Pembidik
1.2 Jendela Bidik
1.3 Lensa
1.4 Macam-macam lensa
1.4.1 Fokus
1.5 Kecepatan rana
1.6 Diafragma
2 Depth of Field
3 Pencahayaan
4 Perkembangan Kamera SLR
5 Pranala luar
6 Referensi
[sunting]
Komponen Kamera SLR
[sunting]
Pembidik
Salah satu bagian yang penting pada kamera adalah pembidik (viewfinder). Ada dua sistem bidikan, yaitu:
jendela bidik yang terpisah dari lensa (Viewfinder type)
bidikan lewat lensa (Reflex type).
Kamera SLR, sesuai dengan namanya (Single Lens Reflex), menggunakan sistem bidikan jenis kedua. Mata fotografer melihat subjek melalui lensa, sehingga tidak terjadi parallax, yaitu keadaan dimana fotografer tidak melihat secara akurat indikasi keberadaan subjek melalui lensa sehingga ada bagian yang hilang ketika foto dicetak. Keadaan parallax ini pada dasarnya terjadi pada pemotretan sangat close up dengan menggunakan kamera viewfinder.
[sunting]
Jendela Bidik
Jendela bidik merupakan sebuah kaca yang di dalamnya tercantum banyak informasi dalam pemotretan. Jendela bidik memuat penemu jarak (range-finder), pilihan diafragma, shutter speed, dan pencahayaan (exposure).
[sunting]
Lensa
Dalam fotografi, lensa berfungsi untuk memokuskan cahaya hingga mampu membakar medium penangkap (film). Di bagian luar lensa biasanya terdapat tiga cincin, yaitu cincin panjang fokus (untuk lensa jenis variabel), cincin diafragma, dan cincin fokus.
[sunting]
Macam-macam lensa
Lensa Standar. Lensa ini disebut juga lensa normal. Berukuran 50 mm dan memberikan karakter bidikan natural.
Lensa Sudut-Lebar (Wide Angle Lens). Lensa jenis ini dapat digunakan untuk menangkap subjek yang luas dalam ruang sempit. Karakter lensa ini adalah membuat subjek lebih kecil daripada ukuran sebenarnya. Dengan menggunakan lensa jenis ini, di dalam ruangan kita dapat memotret lebih banyak orang yang berjejer jika dibandingkan dengan lensa standar. Semakin pendek jarak fokusnya, maka semakin lebar pandangannya. Ukuran lensa ini beragan mulai dari 17 mm, 24 mm, 28 mm, dan 35 mm.
Lensa Fish Eye. Lensa fish eye adalah lensa wide angle dengan diameter 14 mm, 15 mm, dan 16 mm. Lensa ini memberikan pandangan 180 derajat. Gambar yang dihasilkan melengkung.
Lensa Tele. Lensa tele merupakan kebalikan lensa wide angle. Fungsi lensa ini adalah untuk mendekatkan subjek, namun mempersempit sudut pandang. Yang termasuk lensa tele adalah lensa berukuran 70 mm ke atas. Karena sudut pandangannya sempit, lensa tele akan mengaburkan lapangan sekitarnya. Namun hal ini tidak menjadi masalah karena lensa tele memang digunakan untuk mendekatkan pandangan dan memfokuskan pada subjek tertentu.
Lensa Zoom. Merupakan gabungan antara lensa standar, lensa wide angle, dan lesa tele. Ukuran lensa tidak fixed, misalnya 80-200 mm. Lensa ini cukup fleksibel dan memiliki range lensa yang cukup lebar. Oleh karena itu lensa zoom banyak digunakan, sebab pemakai tinggal memutar ukuran lensa sesuai dengan yang dibutuhkan.
Lensa Makro. Lensa makro biasa digunakan untuk memotret benda yang kecil.
[sunting]
Fokus
Fokus adalah bagian yang mengatur jarak ketajaman lensa, sehingga gambar yang dihasilkan tidak berbayang.
[sunting]
Kecepatan rana
Kecepatan rana (shutter speed) artinya penutup (to shut = menutup). Pada waktu kita menekan tombol untuk memotret, terjadi pembukaan lensa sehingga cahaya masuk dan mengenai film. Pekerjaan shutter adalah membuka dan kemudian menutup lagi.
Kecepatan rana adalah kecepatan shutter membuka dan menutup kembali. Shutter speed dapat kita atur. Jika kita memilih 1/100, maka ia akan membuka selama 1/100 detik.
Skala shutter speed bervariasi. Ada yang B, 1, ½, ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000, dst. Mulai dari ½ sampai 1/1000 biasanya hanya disebut angka-angka dibawah saja. Artinya 100 = 1/100 dan 2 artinya ½ detik. Namun jika angka 2 itu berwarna, maka artinya adalah 2 detik.
Sedangkan B artinya bulb, yaitu jika tombol ditekan maka shutter membuka, dan ketika tombol dilepaskan maka shutter menutup.
Yang perlu diingat adalah, semakin lama kecepatan shutter, jumlah cahaya yang masuk akan semakin banyak. Semakin besar angkanya, maka kecepatan shutter akan semakin tinggi(shutter akan semakin cepat membuka dan menutup).
Speed cepat
Speed cepat kita gunakan untuk memotret benda yang bergerak. Semakin cepat pergerakan benda tersebut, maka semakin besar angka speed shutter yang kita butuhkan.
Speed lambat
Jika benda yang bergerak cepat dipotret dengan speed shutter rendah, maka hasilnya ialah gambar akan tampak kabur, seakan-akan disapu, namun latar belakangnya jelas. Efek ini terkadang bagus dan menimbulkan sense of motion dari benda yang dipotret.
Cara lain adalah dengan menggerakkan kamera ke arah gerak objek (panning) bertepatan dengan melepas tombol. Hasil gambarnya ialah latar belakang kabur, tetapi gambar subjek jelas. Seberapa jelas atau kaburnya subjek tergantung pada cepat atau lambatnya gerakan panning. Jika gerakannya bersama-sama dengan gerakan subjek, maka gambar yang dihasilkan jelas. Sebaliknya jika kamera lebih cepat atau lebih lambat dari gerakan subjek, maka hasilnya akan blur (kabur).
Kamera SLR menggunakan pentaprisma yang ditempatkan di atas jalur optikal melalui lensa ke lempengan film. Cahaya yang masuk kemudian dipantulkan ke atas oleh kaca cermin pantul dan mengenai pentaprisma. Pentaprisma kemudian memantulkan cahaya beberapa kali hingga mengenai jendela bidik. Saat tombol dilepaskan, kaca membuka jalan bagi cahaya sehingga cahaya dapat langsung mengenai film. (NESW4586)Daftar isi [sembunyikan]
1 Komponen Kamera SLR
1.1 Pembidik
1.2 Jendela Bidik
1.3 Lensa
1.4 Macam-macam lensa
1.4.1 Fokus
1.5 Kecepatan rana
1.6 Diafragma
2 Depth of Field
3 Pencahayaan
4 Perkembangan Kamera SLR
5 Pranala luar
6 Referensi
[sunting]
Komponen Kamera SLR
[sunting]
Pembidik
Salah satu bagian yang penting pada kamera adalah pembidik (viewfinder). Ada dua sistem bidikan, yaitu:
jendela bidik yang terpisah dari lensa (Viewfinder type)
bidikan lewat lensa (Reflex type).
Kamera SLR, sesuai dengan namanya (Single Lens Reflex), menggunakan sistem bidikan jenis kedua. Mata fotografer melihat subjek melalui lensa, sehingga tidak terjadi parallax, yaitu keadaan dimana fotografer tidak melihat secara akurat indikasi keberadaan subjek melalui lensa sehingga ada bagian yang hilang ketika foto dicetak. Keadaan parallax ini pada dasarnya terjadi pada pemotretan sangat close up dengan menggunakan kamera viewfinder.
[sunting]
Jendela Bidik
Jendela bidik merupakan sebuah kaca yang di dalamnya tercantum banyak informasi dalam pemotretan. Jendela bidik memuat penemu jarak (range-finder), pilihan diafragma, shutter speed, dan pencahayaan (exposure).
[sunting]
Lensa
Dalam fotografi, lensa berfungsi untuk memokuskan cahaya hingga mampu membakar medium penangkap (film). Di bagian luar lensa biasanya terdapat tiga cincin, yaitu cincin panjang fokus (untuk lensa jenis variabel), cincin diafragma, dan cincin fokus.
[sunting]
Macam-macam lensa
Lensa Standar. Lensa ini disebut juga lensa normal. Berukuran 50 mm dan memberikan karakter bidikan natural.
Lensa Sudut-Lebar (Wide Angle Lens). Lensa jenis ini dapat digunakan untuk menangkap subjek yang luas dalam ruang sempit. Karakter lensa ini adalah membuat subjek lebih kecil daripada ukuran sebenarnya. Dengan menggunakan lensa jenis ini, di dalam ruangan kita dapat memotret lebih banyak orang yang berjejer jika dibandingkan dengan lensa standar. Semakin pendek jarak fokusnya, maka semakin lebar pandangannya. Ukuran lensa ini beragan mulai dari 17 mm, 24 mm, 28 mm, dan 35 mm.
Lensa Fish Eye. Lensa fish eye adalah lensa wide angle dengan diameter 14 mm, 15 mm, dan 16 mm. Lensa ini memberikan pandangan 180 derajat. Gambar yang dihasilkan melengkung.
Lensa Tele. Lensa tele merupakan kebalikan lensa wide angle. Fungsi lensa ini adalah untuk mendekatkan subjek, namun mempersempit sudut pandang. Yang termasuk lensa tele adalah lensa berukuran 70 mm ke atas. Karena sudut pandangannya sempit, lensa tele akan mengaburkan lapangan sekitarnya. Namun hal ini tidak menjadi masalah karena lensa tele memang digunakan untuk mendekatkan pandangan dan memfokuskan pada subjek tertentu.
Lensa Zoom. Merupakan gabungan antara lensa standar, lensa wide angle, dan lesa tele. Ukuran lensa tidak fixed, misalnya 80-200 mm. Lensa ini cukup fleksibel dan memiliki range lensa yang cukup lebar. Oleh karena itu lensa zoom banyak digunakan, sebab pemakai tinggal memutar ukuran lensa sesuai dengan yang dibutuhkan.
Lensa Makro. Lensa makro biasa digunakan untuk memotret benda yang kecil.
[sunting]
Fokus
Fokus adalah bagian yang mengatur jarak ketajaman lensa, sehingga gambar yang dihasilkan tidak berbayang.
[sunting]
Kecepatan rana
Kecepatan rana (shutter speed) artinya penutup (to shut = menutup). Pada waktu kita menekan tombol untuk memotret, terjadi pembukaan lensa sehingga cahaya masuk dan mengenai film. Pekerjaan shutter adalah membuka dan kemudian menutup lagi.
Kecepatan rana adalah kecepatan shutter membuka dan menutup kembali. Shutter speed dapat kita atur. Jika kita memilih 1/100, maka ia akan membuka selama 1/100 detik.
Skala shutter speed bervariasi. Ada yang B, 1, ½, ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000, dst. Mulai dari ½ sampai 1/1000 biasanya hanya disebut angka-angka dibawah saja. Artinya 100 = 1/100 dan 2 artinya ½ detik. Namun jika angka 2 itu berwarna, maka artinya adalah 2 detik.
Sedangkan B artinya bulb, yaitu jika tombol ditekan maka shutter membuka, dan ketika tombol dilepaskan maka shutter menutup.
Yang perlu diingat adalah, semakin lama kecepatan shutter, jumlah cahaya yang masuk akan semakin banyak. Semakin besar angkanya, maka kecepatan shutter akan semakin tinggi(shutter akan semakin cepat membuka dan menutup).
Speed cepat
Speed cepat kita gunakan untuk memotret benda yang bergerak. Semakin cepat pergerakan benda tersebut, maka semakin besar angka speed shutter yang kita butuhkan.
Speed lambat
Jika benda yang bergerak cepat dipotret dengan speed shutter rendah, maka hasilnya ialah gambar akan tampak kabur, seakan-akan disapu, namun latar belakangnya jelas. Efek ini terkadang bagus dan menimbulkan sense of motion dari benda yang dipotret.
Cara lain adalah dengan menggerakkan kamera ke arah gerak objek (panning) bertepatan dengan melepas tombol. Hasil gambarnya ialah latar belakang kabur, tetapi gambar subjek jelas. Seberapa jelas atau kaburnya subjek tergantung pada cepat atau lambatnya gerakan panning. Jika gerakannya bersama-sama dengan gerakan subjek, maka gambar yang dihasilkan jelas. Sebaliknya jika kamera lebih cepat atau lebih lambat dari gerakan subjek, maka hasilnya akan blur (kabur).
jark fokus lensa
Jarak fokus atau jarak pumpun (bahasa Inggris: focal length) adalah ukuran jarak antara elemen lensa dengan permukaan film (atau sensor digital) pada kamera.
Lensa dengan panjang fokal besar akan memberikan sudut pandang yang sempit sehingga sebuah objek pada jarak jauh akan nampak menjadi lebih besar di dalam foto. Sebaliknya lensa dengan panjang fokus kecil memberikan sudut pandang tangkap lebih luas dan menyebabkan objek mendapat porsi lebih kecil di dalam foto. Panjang fokal yang bisa berubah-ubah sering diistilahkan dengan zoom (perbesaran)
kinerja dan peran penting lensa kamera
Kamera
Tidak seperti yang diiklankan penjualnya, ukuran Megapiksel sebenarnya tidak terlalu berpengaruh. Dua Megapiksel sudah lebih dari cukup untuk kamera digital poket. Daripada membeli kamera bermegapiksel terlalu besar, lebih baik utamakan fasilitas seperti autofokus, optical zoom, pengatur shutterspeed, bukaan, dan pajanan, atau white balance.
Kamera tipis dirancang hanya untuk alasan kepraktisan. Ada efek samping dari hal ini, yaitu masalah kualitas. Kamera tebal besar bagaimanapun akan menghasilkan gambar lebih baik daripada kamera tipis dan ringan.
Kamera telepon seluler sebesar apapun Megapikselnya akan menghasilkan gambar buruk. Lebih baik gunakan kamera poket biasa, walaupun harganya lebih murah.
[sunting]
Scanner
Jika tidak untuk diolah lebih lanjut, ketajaman 300 dpi sudah cukup. Daripada membeli scanner yang lebih tinggi daripada itu, lebih baik mempertimbangkan scanner dengan fasilitas pemindaian negatif film.
Perhatikan jamur putih di permukaan kaca scanner. Scanner mahal berjamur tidak kalah buruk kualitasnya dibanding scanner murahan.
Scanner memiliki banyak keterbatasan. Terkadang lebih baik memotret langsung suatu benda dengan kamera daripada menggunakan scanner.
[sunting]
Monitor
Monitor mahal tidak terlalu berguna jika tidak menggunakan setting warna dan gamma yang benar. Akibatnya pengguna lain yang tidak mengikuti setting monitor anda mungkin akan melihat gambar tersebut dalam keadaan buruk.
Monitor kecil untuk laptop walaupun mahal akan mempersulit kerja dan menyakiti mata. Walaupun terkesan lebih murahan, lebih baik gunakan yang daya pandangnya luas.
[sunting]
Bekerja dengan alat
[sunting]
Kamera
Pastikan fisik anda dalam keadaan bugar saat memotret.
Tripod mini sudah dijual dengan harga murah. Hasilnya jauh lebih baik daripada fasilitas antishake yang disediakan kamera.
ISO bukanlah ukuran kualitas gambar. Sebaliknya semakin tinggi angka ISO, semakin pecah gambar yang dihasilkan. Gunakan ISO tinggi hanya untuk memotret di tempat yang minim cahaya.
Hati-hati dengan shutterspeed di bawah 1/30 detik. Pertimbangkan menggunakan tripod atau blitz.
Cahaya memegang peran penting saat memotret. Atur sedemikian rupa agar hasilnya maksimal.
Gunakan fasilitas makro (jika tersedia) saat memotret benda kecil atau mengambil tekstur dari dekat.
Bersihkan bagian luar lensa dengan pembersih yang disarankan. Hindari membersihkan dengan cairan apapun. Bagian dalam kamera biasanya sudah dirancang untuk tidak dibersihkan.
Kamera adalah benda ringkih, ikuti buku petunjuk dengan teliti dan rawat dengan benar.
[sunting]
Scanner
Jika memindai hasil cetakan seperti majalah, stiker, atau tabloid, gunakan descreen
JIka tidak membutuhkan tujuan khusus, sebaiknya hindari mengoreksi warna scanner. Set brightness, contrast, dan color balance ke 0.
Daripada memutar gambar dengan software yang bisa menyebabkan kerusakan gambar, lebih baik perbaiki posisi gambar di dalam scanner.
[sunting]
Memaksimalkan piranti lunak
Pastikan perangkat lunak pengolah gambar anda selalu up to date. Tetapi pertimbangkan pula kadang versi terbaru hanya akan berisi fasilitas yang memberatkan komputer anda tanpa pernah dimanfaatkan.
Jika menggunakan produk adobe, manfaatkan fasilitas adobe gamma loader yang akan muncul saat pertama kali memasang di komputer. Ikuti petunjuknya dengan teliti.
Manfaatkan fasilitas cropping, brightness-contrass adjustment, dan color balance dengan baik. Hasilnya sering di luar dugaan.
[sunting]
Kompresi gambar:JPG, GIF, PNG, atau SVG?
Masing-masing jenis kompresi memiliki karakterstik tersendiri. Misalnya JPG memiliki kompresi yang merusak kualitas gambar. GIF dan SVG efektif untuk mengkompresi gambar vektor.
Untuk kompresi lossy seperti JPG, perhatikan bahwa semakin kecil file yang dihasilkan, semakin buruk kualitas gambar.
[sunting]
Memaksimalkan kinerja anda
Buat perencanaan sebelum bekerja. Perencanaan yang baik mengefisienkan waktu anda dan membuat karya tidak kehilangan arah.
Retouch sehalus apapun akan mudah ketahuan. Hindari jika tidak perlu.
Bekerjalah dalam suasana hati baik, karena mood akan terlihat jelas di hasil kerja anda.
Telitilah detail sekecil apapun.
Tidak seperti yang diiklankan penjualnya, ukuran Megapiksel sebenarnya tidak terlalu berpengaruh. Dua Megapiksel sudah lebih dari cukup untuk kamera digital poket. Daripada membeli kamera bermegapiksel terlalu besar, lebih baik utamakan fasilitas seperti autofokus, optical zoom, pengatur shutterspeed, bukaan, dan pajanan, atau white balance.
Kamera tipis dirancang hanya untuk alasan kepraktisan. Ada efek samping dari hal ini, yaitu masalah kualitas. Kamera tebal besar bagaimanapun akan menghasilkan gambar lebih baik daripada kamera tipis dan ringan.
Kamera telepon seluler sebesar apapun Megapikselnya akan menghasilkan gambar buruk. Lebih baik gunakan kamera poket biasa, walaupun harganya lebih murah.
[sunting]
Scanner
Jika tidak untuk diolah lebih lanjut, ketajaman 300 dpi sudah cukup. Daripada membeli scanner yang lebih tinggi daripada itu, lebih baik mempertimbangkan scanner dengan fasilitas pemindaian negatif film.
Perhatikan jamur putih di permukaan kaca scanner. Scanner mahal berjamur tidak kalah buruk kualitasnya dibanding scanner murahan.
Scanner memiliki banyak keterbatasan. Terkadang lebih baik memotret langsung suatu benda dengan kamera daripada menggunakan scanner.
[sunting]
Monitor
Monitor mahal tidak terlalu berguna jika tidak menggunakan setting warna dan gamma yang benar. Akibatnya pengguna lain yang tidak mengikuti setting monitor anda mungkin akan melihat gambar tersebut dalam keadaan buruk.
Monitor kecil untuk laptop walaupun mahal akan mempersulit kerja dan menyakiti mata. Walaupun terkesan lebih murahan, lebih baik gunakan yang daya pandangnya luas.
[sunting]
Bekerja dengan alat
[sunting]
Kamera
Pastikan fisik anda dalam keadaan bugar saat memotret.
Tripod mini sudah dijual dengan harga murah. Hasilnya jauh lebih baik daripada fasilitas antishake yang disediakan kamera.
ISO bukanlah ukuran kualitas gambar. Sebaliknya semakin tinggi angka ISO, semakin pecah gambar yang dihasilkan. Gunakan ISO tinggi hanya untuk memotret di tempat yang minim cahaya.
Hati-hati dengan shutterspeed di bawah 1/30 detik. Pertimbangkan menggunakan tripod atau blitz.
Cahaya memegang peran penting saat memotret. Atur sedemikian rupa agar hasilnya maksimal.
Gunakan fasilitas makro (jika tersedia) saat memotret benda kecil atau mengambil tekstur dari dekat.
Bersihkan bagian luar lensa dengan pembersih yang disarankan. Hindari membersihkan dengan cairan apapun. Bagian dalam kamera biasanya sudah dirancang untuk tidak dibersihkan.
Kamera adalah benda ringkih, ikuti buku petunjuk dengan teliti dan rawat dengan benar.
[sunting]
Scanner
Jika memindai hasil cetakan seperti majalah, stiker, atau tabloid, gunakan descreen
JIka tidak membutuhkan tujuan khusus, sebaiknya hindari mengoreksi warna scanner. Set brightness, contrast, dan color balance ke 0.
Daripada memutar gambar dengan software yang bisa menyebabkan kerusakan gambar, lebih baik perbaiki posisi gambar di dalam scanner.
[sunting]
Memaksimalkan piranti lunak
Pastikan perangkat lunak pengolah gambar anda selalu up to date. Tetapi pertimbangkan pula kadang versi terbaru hanya akan berisi fasilitas yang memberatkan komputer anda tanpa pernah dimanfaatkan.
Jika menggunakan produk adobe, manfaatkan fasilitas adobe gamma loader yang akan muncul saat pertama kali memasang di komputer. Ikuti petunjuknya dengan teliti.
Manfaatkan fasilitas cropping, brightness-contrass adjustment, dan color balance dengan baik. Hasilnya sering di luar dugaan.
[sunting]
Kompresi gambar:JPG, GIF, PNG, atau SVG?
Masing-masing jenis kompresi memiliki karakterstik tersendiri. Misalnya JPG memiliki kompresi yang merusak kualitas gambar. GIF dan SVG efektif untuk mengkompresi gambar vektor.
Untuk kompresi lossy seperti JPG, perhatikan bahwa semakin kecil file yang dihasilkan, semakin buruk kualitas gambar.
[sunting]
Memaksimalkan kinerja anda
Buat perencanaan sebelum bekerja. Perencanaan yang baik mengefisienkan waktu anda dan membuat karya tidak kehilangan arah.
Retouch sehalus apapun akan mudah ketahuan. Hindari jika tidak perlu.
Bekerjalah dalam suasana hati baik, karena mood akan terlihat jelas di hasil kerja anda.
Telitilah detail sekecil apapun.
Kamis, 24 Juli 2008
sub kompetensi 4
PEMANCAR TELEVISI VHF DAN UHF
A. Kualitas penerimaan siaran televisi
Besarnya signal penerimaan siaran televisi disuatu tempat dipengaruhi beberapa parameter dari stasiun pemancar yang meliputi antara lain :
Daya pancar
Gain dan sistem antena pemancar
Jarak lokasi pemancar dengan lokasi penerimaan
Frequency saluran yang digunakan
Gain dan antena sistem dari pesawat penerima
Profile chart antara antena pemancar dengan antena pesawat penerima
Ketinggian lokasi pemancar terhadap lokasi penerimaApabila dinyatakan dalam rumus, dapat kita lihat dengan jelas parameter-parameter yang berpengaruh pada penerimaan signal siaran televisi :
Pfs(db) = Po(db) + Gant Tx(db) – Apl(db) + Gant Rx(db)
Pfs(db) : Level Field Strength dalam satuan dB
Po(db) : Power Output pemancar dalam satuan dB
Gant Tx(db) : Gain antena pemancar dalam satuan dB
Apl(db) : Anttenuasi Path Loss dalam satuan dB
Gant Rx(db) : Gain antena penerima dalam satuan dB
B. Daya Pancar
Kiranya semua orang tahu bahwa besarnya daya pancar, akan mempengaruhi besarnya signal penerimaan siaran televisi disuatu tempat tertentu pada jarak tertentu dari stasiun pemancar televisi. Semakin tinggi daya pancar semakin besar level kuat medan penerimaan siaran televisi. Namun demikina besarnya penerimaan siaran televisi tidak hanya dipengaruhi oleh besarnya daya pancar.
C. Gain Antena
Besarnya Gain antena dipengaruhi oleh jumlah dan susunan antena serta frequency yang digunakan. Antena pemancar UHF tidak mungkin digunakan untuk pemancar TV VHF dan sebaliknya, karena akan menimbulkan VSWR yang tinggi. Sedangkan antena penerima VHF dapat saja untuk menerima signal UHF dan sebaliknya, namun Gain antenanya akan sangat mengecil dari yang seharusnya.
D. Path Loss (redaman Ruang)
Path Loss dapat diartikan sebagai redaman propagasi, yaitu besarnya daya yang hilang dalam menempuh jarak tertentu. Besarnya redaman disamping ditentukan oleh kondisi alam seperti tidak adanya halangan antara pemancar dengan penerima dan kondisi altitude dari masing-masing lokasi maupun antara kedua lokasi, redaman sangat dipengaruhi oleh jarak antara pemancar dengan penerima dan frekwensi yang digunakan. Dengan tanpa memperhitungkan kondisi alam dan lokasi dimana pemancar dan penerima berada, besarnya Path Loss dapat dihitung dengan menggunakan rumus “Free Space Loss” sebagai berikut :
A pl(db) = +32,5(db) +(20 log D (km))(db) + (20 log F (Mhz))(db)
E. Kebutuhan Daya Pancar
Besarnya daya pancar yang diperlukan untuk menjangkau sasaran pada jarak tertentu dipengaruhi antara lain oleh besarnya frekwensi, ketinggian antena pemancar dan antena penerima serta profile antara lokasi pemancar dengan lokasi penerima, serta besarnya level kuat medan yang diharapkan dapat diterima oleh pesawat penerima. Besarnya level kuat medan penerimaan siaran televisi untuk frekwensi band tertentu, CCIR/ ITU-R memberikan rekomendasi yang dapat digunakan sebagai referensi, namun demikina di setiap negara dapat saja memiliki kebijaksanaan tersendiri tentang kualitas penerimaan siaran televisi yang dikaitkan dengan persyaratan kuat medan minimum.
Sampai saat ini di Indonesia belum ada kebijaksanaan khusus mengenai persyaratan minimum kuat medan pancaran siaran televisi yang harus dipenuhi untuk suatu penerimaan siaran televisi yang dianggap baik. Sementara itu, untuk kebutuhan perencanaan pengembangan perluasan jangkauan digunakan rekomendasi CCIR/ ITU-R sebagai acuan.
Dibawah ini sebagai contoh disampaikan daftar kuat medan minimum menurut rekomendasi CCIR dan daftar kuat medan minimum yang digunakan oleh negara Australia.
Minimum Field-Strength Value(CCIR recommendation 417 & 412)
Band
Frequency(Mhz)
Saluran
Kuat Medan (dBuV/ m
Urban
Sub Urban
Rural
VHF band I 47-61 2-3 48
VHF band II mono 87-108 70 60 48
VHF band II stereo 87-108 74 66 54
VHF band III 174-230 4-11 55
UHF band IV 470-605 21-37 65
UHF band V 606-807 38-70 70
Minimum Field-Strength Value(Telecom Australia)
Band
Frequency(Mhz)
Saluran
Kuat Medan (dBuV/ m
Urban
Sub Urban
Rural
VHF band I 47-61 2-3 75 65 50
VHF band II mono 87-108 75 65 50
VHF band II stereo 87-108 75 65 50
VHF band III 174-230 4-11 75 65 50
UHF band IV 470-605 21-37 80 72 62
UHF band V 606-807 38-70 80 76 67
Untuk menganalisa perbedaan kebutuhan daya pancar antara pemancar VHF dengan UHF dapat dilakukan dengan menggunakan perhitungan propagasi gelombang pada “free space” ataupun menggunakan chart/ grafik propagasi yang disusun oleh CCIR serta dengan memegang variabel-variabel tertentu dalam kondisi yang sama.
Pada kesempatan ini marilah kita lakukan perhitungan dengan menggunakan rumus propagasi gelombang pada “free space” dengan variabel-variabel yang dipegang tetap yaitu sebagai berikut :
1) Jarak pemancar dengan penerima = 20 Km2) Antara pemancar dan penerima tidak ada halangan/ obstacle dan ketinggian antena pemancar dan penerima tidak diperhitungkan3) Frekwensi VHF = 200Mhz dan UHF = 500Mhz4) Pfs = Field strength untuk VHF = 75dbuV/m = -30dBm/Z = 50Ohm5) Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm6) Gant = Gain antena = 10dB7) Po = power output pemancar
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Dengan data sebagaimana tersebut diatas, dapat dihitung kebutuhan power output VHF yang dapat menjangkau sasaran sejauh 20Km adalah sebagai berikut :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Po(db) = -32bdm – 10db + 32,5db + 20log20 + 20log200
Po(db) = -32bdm – 10db + 32,5db + 26db + 46db
Po(db) = 62,5 dbm = 2,5dbk = 1,8KW
Sedangkan untuk pemancar UHF diperlukan power output sebesar :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Po(db) = -27bdm – 10db + 32,5db + 20log20 + 20log500
Po(db) = -27bdm – 10db + 32,5db + 26db + 54db
Po(db) = 75,5 dbm = 15,5dbk = 35KW
Apabila dilakukan perhitungan dengan menggunakan grafik rumus propagasi gelombang pada “free space” dengan variable-variable yang dipegang tetap yaitu sebagai berikut :
1) Jarak pemancar dengan penerima = 20Km2) Antara pemancar dan penerima tidak ada halangan/ obstacle3) ketinggian antena pemancar = 150meter, dan ketinggian antene penerima penerima = 10meter4) Pfs = Field strength untuk VHF = 75dbuV/m = -32dBm/Z = 50Ohm5) Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm6) Gant = Gain antena = 10dB7) Po = Power output pemancar
Dengan data sebagaimana tersebut diatas dan dengan menggunakan standard CCIR, besarnya daya pancar dapat dihitung sebagai berikut :
1. Perhitungan Dya Pancar Pemancar VHF
Dengan menggunakan grafik pada gambar 1, dapat dijelsakan bahwa dengan 1 Kw atau 0dbk ERP pada jarak 20Km dengan ketinggian antena pemancar 150 meter dapat diperoleh field strength sebesar 63dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 75dbuV/m pada jarak 20Km diperlukan ERP sebesar 12dBk dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar VHF yang diperlukan sebesar 2dBk atau 1,58KW
2. Perhitungan Daya Pancar Pemancar UHF
Dengan menggunakan grafik pada gambar 2, dapat dijelaskan bahwa dengan 1 KW atau 0dbk ERP pada jarak 20Km denagn ketinggian antena pemancar 150 meter dapat diperoleh Field Strength sebesar 61dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 19dbk, dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar UHF yang diperlukan adalah sebesar 9dbk atau 8KW
Dari uraian tersebut diatas dapat disampaikan bahwa untuk mendapatkan kualitas penerimaan gambar dan suara yang baik pada jarak yang sama diperlukan daya pancar yang lebih tinggi apabila menggunakan pemancar UHF dari pada apabila menggunakan pemancar VHF.
F. Biaya Investasi
Penggunaan pemancar UHF untuk menjangkau daerah sasaran yang sama jauhnya, diperlukan biaya investasi yang jauh lebih besar daripada menggunakan pemancar VHF. Hal ini sangat wajar karena untuk menjangkau sasaran tertentu pemancar UHF memerlukan daya yang 3 s/d 5 kali lebih besar daripada daya pemancar VHF.
G. Kualitas
Kualitas hasil pencaran dari pemancar VHF dibandingkan dengan kualitas hasil pancaran dari pemancar UHF adalah sama asalkan keduanya memenuhi persyaratan dan spesifikasi yang telah ditentukan. Perbedaan yang mungkin terjadi tudak akan dapat dilihat oleh mata dan didengar oleh telinga, tetapi hanya dapat diketahui dengan mengunakan alat ukur. Tidak adanya perbedaan kualitas penerimaan gambar dan suara dari pemancar televisi VHF dan UHF ini barangkali dapat ditanyakan kepada yang sempat melihat siaran televisi Singapore, Malaysia, Jepang ataupun Jerman, dimana perbedaan kualitas penerimaa
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
1. VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
2. VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
3. UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
n siaran televisi VHF dan UHF tidak dapat di indentifikasi
A. Kualitas penerimaan siaran televisi
Besarnya signal penerimaan siaran televisi disuatu tempat dipengaruhi beberapa parameter dari stasiun pemancar yang meliputi antara lain :
Daya pancar
Gain dan sistem antena pemancar
Jarak lokasi pemancar dengan lokasi penerimaan
Frequency saluran yang digunakan
Gain dan antena sistem dari pesawat penerima
Profile chart antara antena pemancar dengan antena pesawat penerima
Ketinggian lokasi pemancar terhadap lokasi penerimaApabila dinyatakan dalam rumus, dapat kita lihat dengan jelas parameter-parameter yang berpengaruh pada penerimaan signal siaran televisi :
Pfs(db) = Po(db) + Gant Tx(db) – Apl(db) + Gant Rx(db)
Pfs(db) : Level Field Strength dalam satuan dB
Po(db) : Power Output pemancar dalam satuan dB
Gant Tx(db) : Gain antena pemancar dalam satuan dB
Apl(db) : Anttenuasi Path Loss dalam satuan dB
Gant Rx(db) : Gain antena penerima dalam satuan dB
B. Daya Pancar
Kiranya semua orang tahu bahwa besarnya daya pancar, akan mempengaruhi besarnya signal penerimaan siaran televisi disuatu tempat tertentu pada jarak tertentu dari stasiun pemancar televisi. Semakin tinggi daya pancar semakin besar level kuat medan penerimaan siaran televisi. Namun demikina besarnya penerimaan siaran televisi tidak hanya dipengaruhi oleh besarnya daya pancar.
C. Gain Antena
Besarnya Gain antena dipengaruhi oleh jumlah dan susunan antena serta frequency yang digunakan. Antena pemancar UHF tidak mungkin digunakan untuk pemancar TV VHF dan sebaliknya, karena akan menimbulkan VSWR yang tinggi. Sedangkan antena penerima VHF dapat saja untuk menerima signal UHF dan sebaliknya, namun Gain antenanya akan sangat mengecil dari yang seharusnya.
D. Path Loss (redaman Ruang)
Path Loss dapat diartikan sebagai redaman propagasi, yaitu besarnya daya yang hilang dalam menempuh jarak tertentu. Besarnya redaman disamping ditentukan oleh kondisi alam seperti tidak adanya halangan antara pemancar dengan penerima dan kondisi altitude dari masing-masing lokasi maupun antara kedua lokasi, redaman sangat dipengaruhi oleh jarak antara pemancar dengan penerima dan frekwensi yang digunakan. Dengan tanpa memperhitungkan kondisi alam dan lokasi dimana pemancar dan penerima berada, besarnya Path Loss dapat dihitung dengan menggunakan rumus “Free Space Loss” sebagai berikut :
A pl(db) = +32,5(db) +(20 log D (km))(db) + (20 log F (Mhz))(db)
E. Kebutuhan Daya Pancar
Besarnya daya pancar yang diperlukan untuk menjangkau sasaran pada jarak tertentu dipengaruhi antara lain oleh besarnya frekwensi, ketinggian antena pemancar dan antena penerima serta profile antara lokasi pemancar dengan lokasi penerima, serta besarnya level kuat medan yang diharapkan dapat diterima oleh pesawat penerima. Besarnya level kuat medan penerimaan siaran televisi untuk frekwensi band tertentu, CCIR/ ITU-R memberikan rekomendasi yang dapat digunakan sebagai referensi, namun demikina di setiap negara dapat saja memiliki kebijaksanaan tersendiri tentang kualitas penerimaan siaran televisi yang dikaitkan dengan persyaratan kuat medan minimum.
Sampai saat ini di Indonesia belum ada kebijaksanaan khusus mengenai persyaratan minimum kuat medan pancaran siaran televisi yang harus dipenuhi untuk suatu penerimaan siaran televisi yang dianggap baik. Sementara itu, untuk kebutuhan perencanaan pengembangan perluasan jangkauan digunakan rekomendasi CCIR/ ITU-R sebagai acuan.
Dibawah ini sebagai contoh disampaikan daftar kuat medan minimum menurut rekomendasi CCIR dan daftar kuat medan minimum yang digunakan oleh negara Australia.
Minimum Field-Strength Value(CCIR recommendation 417 & 412)
Band
Frequency(Mhz)
Saluran
Kuat Medan (dBuV/ m
Urban
Sub Urban
Rural
VHF band I 47-61 2-3 48
VHF band II mono 87-108 70 60 48
VHF band II stereo 87-108 74 66 54
VHF band III 174-230 4-11 55
UHF band IV 470-605 21-37 65
UHF band V 606-807 38-70 70
Minimum Field-Strength Value(Telecom Australia)
Band
Frequency(Mhz)
Saluran
Kuat Medan (dBuV/ m
Urban
Sub Urban
Rural
VHF band I 47-61 2-3 75 65 50
VHF band II mono 87-108 75 65 50
VHF band II stereo 87-108 75 65 50
VHF band III 174-230 4-11 75 65 50
UHF band IV 470-605 21-37 80 72 62
UHF band V 606-807 38-70 80 76 67
Untuk menganalisa perbedaan kebutuhan daya pancar antara pemancar VHF dengan UHF dapat dilakukan dengan menggunakan perhitungan propagasi gelombang pada “free space” ataupun menggunakan chart/ grafik propagasi yang disusun oleh CCIR serta dengan memegang variabel-variabel tertentu dalam kondisi yang sama.
Pada kesempatan ini marilah kita lakukan perhitungan dengan menggunakan rumus propagasi gelombang pada “free space” dengan variabel-variabel yang dipegang tetap yaitu sebagai berikut :
1) Jarak pemancar dengan penerima = 20 Km2) Antara pemancar dan penerima tidak ada halangan/ obstacle dan ketinggian antena pemancar dan penerima tidak diperhitungkan3) Frekwensi VHF = 200Mhz dan UHF = 500Mhz4) Pfs = Field strength untuk VHF = 75dbuV/m = -30dBm/Z = 50Ohm5) Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm6) Gant = Gain antena = 10dB7) Po = power output pemancar
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Dengan data sebagaimana tersebut diatas, dapat dihitung kebutuhan power output VHF yang dapat menjangkau sasaran sejauh 20Km adalah sebagai berikut :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Po(db) = -32bdm – 10db + 32,5db + 20log20 + 20log200
Po(db) = -32bdm – 10db + 32,5db + 26db + 46db
Po(db) = 62,5 dbm = 2,5dbk = 1,8KW
Sedangkan untuk pemancar UHF diperlukan power output sebesar :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Po(db) = -27bdm – 10db + 32,5db + 20log20 + 20log500
Po(db) = -27bdm – 10db + 32,5db + 26db + 54db
Po(db) = 75,5 dbm = 15,5dbk = 35KW
Apabila dilakukan perhitungan dengan menggunakan grafik rumus propagasi gelombang pada “free space” dengan variable-variable yang dipegang tetap yaitu sebagai berikut :
1) Jarak pemancar dengan penerima = 20Km2) Antara pemancar dan penerima tidak ada halangan/ obstacle3) ketinggian antena pemancar = 150meter, dan ketinggian antene penerima penerima = 10meter4) Pfs = Field strength untuk VHF = 75dbuV/m = -32dBm/Z = 50Ohm5) Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm6) Gant = Gain antena = 10dB7) Po = Power output pemancar
Dengan data sebagaimana tersebut diatas dan dengan menggunakan standard CCIR, besarnya daya pancar dapat dihitung sebagai berikut :
1. Perhitungan Dya Pancar Pemancar VHF
Dengan menggunakan grafik pada gambar 1, dapat dijelsakan bahwa dengan 1 Kw atau 0dbk ERP pada jarak 20Km dengan ketinggian antena pemancar 150 meter dapat diperoleh field strength sebesar 63dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 75dbuV/m pada jarak 20Km diperlukan ERP sebesar 12dBk dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar VHF yang diperlukan sebesar 2dBk atau 1,58KW
2. Perhitungan Daya Pancar Pemancar UHF
Dengan menggunakan grafik pada gambar 2, dapat dijelaskan bahwa dengan 1 KW atau 0dbk ERP pada jarak 20Km denagn ketinggian antena pemancar 150 meter dapat diperoleh Field Strength sebesar 61dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 19dbk, dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar UHF yang diperlukan adalah sebesar 9dbk atau 8KW
Dari uraian tersebut diatas dapat disampaikan bahwa untuk mendapatkan kualitas penerimaan gambar dan suara yang baik pada jarak yang sama diperlukan daya pancar yang lebih tinggi apabila menggunakan pemancar UHF dari pada apabila menggunakan pemancar VHF.
F. Biaya Investasi
Penggunaan pemancar UHF untuk menjangkau daerah sasaran yang sama jauhnya, diperlukan biaya investasi yang jauh lebih besar daripada menggunakan pemancar VHF. Hal ini sangat wajar karena untuk menjangkau sasaran tertentu pemancar UHF memerlukan daya yang 3 s/d 5 kali lebih besar daripada daya pemancar VHF.
G. Kualitas
Kualitas hasil pencaran dari pemancar VHF dibandingkan dengan kualitas hasil pancaran dari pemancar UHF adalah sama asalkan keduanya memenuhi persyaratan dan spesifikasi yang telah ditentukan. Perbedaan yang mungkin terjadi tudak akan dapat dilihat oleh mata dan didengar oleh telinga, tetapi hanya dapat diketahui dengan mengunakan alat ukur. Tidak adanya perbedaan kualitas penerimaan gambar dan suara dari pemancar televisi VHF dan UHF ini barangkali dapat ditanyakan kepada yang sempat melihat siaran televisi Singapore, Malaysia, Jepang ataupun Jerman, dimana perbedaan kualitas penerimaa
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
1. VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
2. VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
3. UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
n siaran televisi VHF dan UHF tidak dapat di indentifikasi
sub kompetensi 3
1.3 Standar TV dunia dan HDTV
Televisi resolusi tinggi atau high-definition television (HDTV) adalah standar televisi digital internasional yang disiarkan dalam format 16:9 (TV biasa 4:3) dan surround-sound 5.1 Dolby Digital. Ia memiliki resolusi yang jauh lebih tinggi dari standar lama. Penonton melihat gambar berkontur jelas dan dengan warna-warna matang. HDTV memiliki jumlah pixel hingga 5 kali standar analog PAL yang digunakan di Indonesia.
Mengenal Lebih Jauh Keunggulan HDTV
Selama ini kita sudah sangat familiar dengan sistem national television system committee (NTSC) yang dipergunakan televisi untuk menyajikan gambar. Tetapi, belakangan dengan munculnya teknologi high-definition television (HDTV) atau yang dalam bahasa Indonesia disebut televisi definisi tinggi, menyebabkan fungsi NTSC perlahan-lahan tergantikan. Apa sih sebenarnya teknologi HDTV ini?
---------------------------------
PESATNYA kemajuan teknologi digital, terutama di bidang gambar digital yang mengkombinasikan foto dan video, memang tidak diduga sebelumnya. Kehadiran teknologi HDTV, bukan saja mendorong produk-produk dengan kualitas digital pada beberapa merek perangkat televisi yang sudah punya nama, tetapi juga pada cara perekamannya untuk ditayangkan di HDTV.
Sampai sekarang masih sulit untuk mendefinisikan secara tepat HDTV. Yang pasti, teknologi tayangan televisi yang dianggap terbaik sekarang ini adalah menggunakan sistem NTSC (National Television Systems Committee) yang menayangkan gambar analog, menghasilkan resolusi sebanyak 525 garis pada layar televisi. Sedangkan HDTV menghasilkan resolusi 1.125 garis tayangan yang lebih padat dan mampu menghasilkan informasi video lima kali lebih banyak dibanding sistem NTSC.
Namun, walaupun memiliki keunggulan yang luar biasa dalam menghasilkan resolusi yang rapat, tajam, dan jelas, transmisi HDTV memerlukan bandwith yang lebih besar sampai lima kali dibanding kapasitas sinyal televisi konvensional. Meski masih sulit mendefinisikannya, HDTV dapat diartikan sebagai suatu sistem media komunikasi bergambar dan atau bersuara dengan tingkat kualitas ketajaman gambar (resolusi) yang sangat tinggi (hampir sama dengan kualitas film 35 mm) dan kualitas suaranya juga menyerupai CD (Compact Disk).
Dalam hal ini teknologi pemrosesan sinyal digital dan displai memberikan peran yang sangat penting. Diharapkan juga nantinya bisa melayani multi bahasa dan multi media. Karena HDTV merupakan sistem komunikasi, maka seperti juga sistem komunikasi konvensional lainnya, untuk penyelenggaraannya memerlukan beberapa komponen dasar seperti pusat produksi (studio), pemroses/penyimpan, sistem transmisi dan pesawat penerima.
Konsep dasar HDTV di sisi lain sebenarnya tidak dimaksudkan hanya untuk meningkatkan definisi per wilayah unit tayangan layar televisi, tetapi juga untuk meningkatkan persentase bidang visual yang menayangkan gambar tersebut. Pengembangan HDTV diarahkan pada peningkatan 100 persen jumlah piksel horizontal dan vertikal, misalnya bingkai gambar 1 MB seharusnya memiliki jumlah 1.000 garis x 1.000 titik horizontal.
Hasil yang didapat dari perluasan ini adalah faktor perbaikan 2-3 kali dalam sudut bidang vertikal dan horizontal. Dengan demikian, perbaikan sudut ini pada HDTV juga mengubah rasio menjadi 16:9 dari 4:3 dan menjadi imej yang ditayangkan seperti di "bioskop". HDTV memang merupakan media komunikasi baru dan teknologinya sedang dalam proses penyempurnaan, terutama pada awal dekade 90-an.
Secara singkat sejarah perkembangan HDTV dimulai oleh Jepang yang dimotori oleh pusat riset dan pengembangan NHK (TVRI/RRI-nya Jepang) pada tahun 1968. Kemudian diikuti oleh masyarakat Eropa sebagai pembanding dan akhirnya Amerika Serikat menjadi kompetitor yang harus diperhitungkan.
Diperkirakan teknologi HDTV ini akan menjadi standar televisi masa depan, sehingga seorang peneliti senior dalam bidang sistem strategi dan manajemen Dr. Indu Singh meramalkan bahwa pasar dunia untuk HDTV ini akan mencapai 250 milyar dolar per tahun (tahun 2010).
Televisi resolusi tinggi atau high-definition television (HDTV) adalah standar televisi digital internasional yang disiarkan dalam format 16:9 (TV biasa 4:3) dan surround-sound 5.1 Dolby Digital. Ia memiliki resolusi yang jauh lebih tinggi dari standar lama. Penonton melihat gambar berkontur jelas dan dengan warna-warna matang. HDTV memiliki jumlah pixel hingga 5 kali standar analog PAL yang digunakan di Indonesia.
Mengenal Lebih Jauh Keunggulan HDTV
Selama ini kita sudah sangat familiar dengan sistem national television system committee (NTSC) yang dipergunakan televisi untuk menyajikan gambar. Tetapi, belakangan dengan munculnya teknologi high-definition television (HDTV) atau yang dalam bahasa Indonesia disebut televisi definisi tinggi, menyebabkan fungsi NTSC perlahan-lahan tergantikan. Apa sih sebenarnya teknologi HDTV ini?
---------------------------------
PESATNYA kemajuan teknologi digital, terutama di bidang gambar digital yang mengkombinasikan foto dan video, memang tidak diduga sebelumnya. Kehadiran teknologi HDTV, bukan saja mendorong produk-produk dengan kualitas digital pada beberapa merek perangkat televisi yang sudah punya nama, tetapi juga pada cara perekamannya untuk ditayangkan di HDTV.
Sampai sekarang masih sulit untuk mendefinisikan secara tepat HDTV. Yang pasti, teknologi tayangan televisi yang dianggap terbaik sekarang ini adalah menggunakan sistem NTSC (National Television Systems Committee) yang menayangkan gambar analog, menghasilkan resolusi sebanyak 525 garis pada layar televisi. Sedangkan HDTV menghasilkan resolusi 1.125 garis tayangan yang lebih padat dan mampu menghasilkan informasi video lima kali lebih banyak dibanding sistem NTSC.
Namun, walaupun memiliki keunggulan yang luar biasa dalam menghasilkan resolusi yang rapat, tajam, dan jelas, transmisi HDTV memerlukan bandwith yang lebih besar sampai lima kali dibanding kapasitas sinyal televisi konvensional. Meski masih sulit mendefinisikannya, HDTV dapat diartikan sebagai suatu sistem media komunikasi bergambar dan atau bersuara dengan tingkat kualitas ketajaman gambar (resolusi) yang sangat tinggi (hampir sama dengan kualitas film 35 mm) dan kualitas suaranya juga menyerupai CD (Compact Disk).
Dalam hal ini teknologi pemrosesan sinyal digital dan displai memberikan peran yang sangat penting. Diharapkan juga nantinya bisa melayani multi bahasa dan multi media. Karena HDTV merupakan sistem komunikasi, maka seperti juga sistem komunikasi konvensional lainnya, untuk penyelenggaraannya memerlukan beberapa komponen dasar seperti pusat produksi (studio), pemroses/penyimpan, sistem transmisi dan pesawat penerima.
Konsep dasar HDTV di sisi lain sebenarnya tidak dimaksudkan hanya untuk meningkatkan definisi per wilayah unit tayangan layar televisi, tetapi juga untuk meningkatkan persentase bidang visual yang menayangkan gambar tersebut. Pengembangan HDTV diarahkan pada peningkatan 100 persen jumlah piksel horizontal dan vertikal, misalnya bingkai gambar 1 MB seharusnya memiliki jumlah 1.000 garis x 1.000 titik horizontal.
Hasil yang didapat dari perluasan ini adalah faktor perbaikan 2-3 kali dalam sudut bidang vertikal dan horizontal. Dengan demikian, perbaikan sudut ini pada HDTV juga mengubah rasio menjadi 16:9 dari 4:3 dan menjadi imej yang ditayangkan seperti di "bioskop". HDTV memang merupakan media komunikasi baru dan teknologinya sedang dalam proses penyempurnaan, terutama pada awal dekade 90-an.
Secara singkat sejarah perkembangan HDTV dimulai oleh Jepang yang dimotori oleh pusat riset dan pengembangan NHK (TVRI/RRI-nya Jepang) pada tahun 1968. Kemudian diikuti oleh masyarakat Eropa sebagai pembanding dan akhirnya Amerika Serikat menjadi kompetitor yang harus diperhitungkan.
Diperkirakan teknologi HDTV ini akan menjadi standar televisi masa depan, sehingga seorang peneliti senior dalam bidang sistem strategi dan manajemen Dr. Indu Singh meramalkan bahwa pasar dunia untuk HDTV ini akan mencapai 250 milyar dolar per tahun (tahun 2010).
sub kompetensi 2
1.2 PROSES KERJA PESAWAT TELEVISI
Sebelum kita mengetahui prinsip kerja pesawat televisi, ada baiknya kita mengetahui sedikit tentang perjalanan objek gambar yang biasa kita lihat di layar kaca. Gambar yang kita lihat di layar televisi adalah hasil produksi dari sebuah kamera
Objek gambar yang di tangkap lensa kamera akan dipisahkan berdasarkan tiga warna dasar, yaitu merah (R = red), hijau (B = blue). Hasil tersebut akan dipancarkan oleh pemancar televisi (transmiter). Pada sestem pemancar televisi, informasi visual yang kita lihat pada layar kaca pada awalnya di ubah dari objek gambar menjadi sinyal listrik. Sinyal listrik tersebut akan ditransmisikan oleh pemancar ke pesawat penerima (receiver) televisi.
PRINSIP KERJA TELEVISI
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi.
Selain gambar, juga membawa suara ?
Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi.Modulasi adalah sinyal bidang frekuensi dasar (base band).
Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75khz melainkan 25 khz.
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
Sebelum kita mengetahui prinsip kerja pesawat televisi, ada baiknya kita mengetahui sedikit tentang perjalanan objek gambar yang biasa kita lihat di layar kaca. Gambar yang kita lihat di layar televisi adalah hasil produksi dari sebuah kamera
Objek gambar yang di tangkap lensa kamera akan dipisahkan berdasarkan tiga warna dasar, yaitu merah (R = red), hijau (B = blue). Hasil tersebut akan dipancarkan oleh pemancar televisi (transmiter). Pada sestem pemancar televisi, informasi visual yang kita lihat pada layar kaca pada awalnya di ubah dari objek gambar menjadi sinyal listrik. Sinyal listrik tersebut akan ditransmisikan oleh pemancar ke pesawat penerima (receiver) televisi.
PRINSIP KERJA TELEVISI
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi.
Selain gambar, juga membawa suara ?
Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi.Modulasi adalah sinyal bidang frekuensi dasar (base band).
Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75khz melainkan 25 khz.
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.